Mark Scheme (Results)

Summer 2018

Pearson Edexcel International A level In Statistics S2 (WST02/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2018
Publications Code WST02_01_1806_MS
All the material in this publication is copyright
© Pearson Education Ltd 2018

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme.
Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PEARSON EDEXCEL IAL MATHEMATICS

General Instructions for Marking

1. The total number of marks for the paper is 75
2. The Edexcel Mathematics mark schemes use the following types of marks:

- M marks: Method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod - benefit of doubt
- ft - follow through
- the symbol $\sqrt{ }$ will be used for correct ft
- cao - correct answer only
- cso - correct solution only. There must be no errors in this part of the question to obtain this mark
- isw - ignore subsequent working
- awrt - answers which round to
- SC: special case
- oe - or equivalent (and appropriate)
- d... or dep - dependent
- indep - independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper or ag- answer given
- \square or d... The second mark is dependent on gaining the first mark

4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
6. If a candidate makes more than one attempt at any question:

- If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
- If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.

7. Ignore wrong working or incorrect statements following a correct answer.

June 2018
 WST02
 Mark Scheme

Question Number	Scheme		Marks
1(a)(i)(ii)	$\begin{aligned} & \mathrm{P}(M=1)=0.315124 \ldots \\ & \begin{array}{c} \mathrm{P}(M \geqslant 3)=1-\mathrm{P}(M \leqslant 2) \\ \\ =1-0.9885 \end{array} \end{aligned}$	awrt 0.315	B1
		awrt $\mathbf{0 . 0 1 1 5}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$
(b)	$n \times 0.05=3 \quad$ (o.e.)	$n=60$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$
(c)	$\begin{aligned} & {[\mathrm{P}(F \geqslant 1)>0.99 \quad \Rightarrow] 1-\mathrm{P}(F=0)>0.99} \\ & 1-0.95^{n}>0.99 \text { or } 0.95^{n}<0.01 \quad \text { (o.e.) } \end{aligned}$$n \log 0.95<\log 0.01 \text { or } n>\frac{\log 0.01}{\log 0.95}[=89.78 \ldots]$		M1 M1
			M1
		$\therefore \underline{\square}=90$	A1cso
			(4)
	Notes		Total 9
(a)(ii)	M1 for $1-\mathrm{P}(M \leqslant 2)$. Condone writing $1-\mathrm{P}(M<2)$ if the correct answer follows. Just seeing $1-\mathrm{P}(X<3)$ is not enough unless it leads to the correct answer. A1 for awrt 0.0115 (Correct answer only 2/2)		
(b)	M1 for writing or using $n \times 0.05$ Can ignore mention of Poisson if correct equation is seen. A1 for 60 only (Correct answer only 2/2)		
(c)	$1^{\text {st }} \mathrm{M} 1$ for using or writing $1-\mathrm{P}(F=0)$ in a correct inequality or equation with 0.99 $2^{\text {nd }} \mathrm{M} 1$ for either of the correct inequalities, allow \geqslant or \leqslant or $=(\mathrm{oe})$ [May be implied by $3^{\text {rd }} \mathrm{M}$] Use of " $=$ " instead of inequality can score $1^{\text {st }}$ two M marks only.		
	$3^{\text {rd }} \mathrm{M} 1$ for solving $0.95^{n}<0.01$ (o.e.) (must have an inequality) Must have a correct inequality here so $n \log 0.95=\log 0.01$ is M0A0 even if it leads to 90 For trial and improvement approach must see both $89 \& 90$ used. Trial and improvement needs $\mathrm{P}(0 \mid n=89)=0.0104 . .>0.01$ and $\mathrm{P}(0 \mid n=90)=0.00988 . .<0.01$ and then $1^{\text {st }}$ and $2^{\text {nd }} \mathrm{M} 1$ implied A1 cso - no sign errors or mistakes		
$\begin{aligned} & \mathbf{S C} \\ & \mathbf{N B} \end{aligned}$	Wrong inequality $\quad 1-\mathrm{P}(F=0)<0.99$ leading to $n<$ awrt 89.8 can score M0M0M1A0 Normal use of normal distribution will score $0 / 4$		

Question Number	Scheme	Marks
3.(a)	$\begin{aligned} & (102-100) p=\frac{1}{3} \text { or } \frac{102-100}{k-100}=\frac{1}{3} \text { or } \frac{k-102}{k-100}=\frac{2}{3} \quad \underline{\text { or }}(k-100) p=1 \text { (o.e.) } \\ & p=\frac{1}{6} \text { so } \quad(k-100) \frac{1}{6}=1 \\ & \quad k-100=6 \text { therefore } k=106 * \end{aligned}$	M1 dM1 A1cso
(b)(i)	$\frac{5}{6}$ (or exact equivalent)	B1
(ii)	0	
(c)		B1 (1)
(d)	$\frac{r-100}{6}=0.15$	M1
	$=\underline{100.9}$	A1 (2)
(e)	$3 \mathrm{P}(X \leqslant x-1.5)=\mathrm{P}(X \geqslant x+1.5) \quad \text { so } \quad \frac{3}{6}(x-1.5-100)=\frac{1}{6}(106-x-1.5)$	M1
	$\begin{aligned} {[3(x-1.5-100)=(106-x-1.5)] \text { implies } 4 x-304.5=104.5 } & \text { (o.e.) } \\ x & =\underline{\mathbf{1 0 2 . 2 5}} \quad \text { (o.e.) } \end{aligned}$	$\begin{aligned} & \mathrm{dM} 1 \\ & \mathrm{~A} 1 \end{aligned}$
		(3)
	Notes	Total 11
(a)	$1^{\text {st }}$ M1 for one of the 4 given equations (o.e.) $2^{\text {nd }}$ M1 for at least one intermediate step of working (condone 1 slip or sign error) A1 cso no incorrect working seen leading to $k=106$	
ALT	$1^{\text {st }} \mathrm{M} 1$ $\frac{1}{3}$ represents 2 ml so $\frac{2}{3}$ is 4 ml or total width is 6 ml These 2 M mark on a clearly labe $2^{\text {nd }} \mathrm{dM} 1$ So $k=102+$ " 4 " or $100+$ " $6 "$ A1cso So $k=106$	may be seen ed diagram.
(c)	B1 for 103 (if working is seen it must not come from a discrete distribution or else B0	
(d)	M1 for $\frac{r-100}{6}=0.15$ oe (any correct equation or expression)	
(e)	$1^{\text {st }} \mathrm{M} 1$ for a correct equation for x e.g. $3 p(x-1.5-100)=p(106-x-1.5)$ allow w $2^{\text {nd }}$ dM1 for attempt to simplify, must have a linear equation with x appearing only (condone 1 slip or sign error but no "lost" terms)	hout $p=\frac{1}{6}$ nce
ALT	$\begin{aligned} & 1^{\text {st }} \mathrm{M} 1 \text { for } \mathrm{P}(X \leqslant x-1.5)=\frac{1}{8} \text { or } \mathrm{P}(X \geqslant x+1.5)=\frac{3}{8} \\ & 2^{\text {nd }} \mathrm{M} 1 \text { for } 1.5+\frac{6}{8}=2.25 \text { (o.e.) } \end{aligned}$	
	A1 for $x=102.25$ or any exact equivalent e.g. $\frac{409}{4}$ (Correct answer only $3 / 3$)	

Question Number	Scheme	Marks
4. (a)	Every possible sample (of size 12 cartons) has an equal chance of being selected. Or sample selected without bias from the dairy/factory (o.e.) Or sample where all cartons have the same chance/prob of being chosen (o.e.)	B1
(b)	[The volumes of] all the cartons of milk Or the cartons of milk from the dairy/factory (o.e.)	B1
(c)	$\mathrm{N}(0,1)$	(1) B1
(d)	The probability distribution of X or the distribution of all possible values of X Or all the values of the statistic and their probabilities (o.e.)	(1) B1
(e)	Only (II) is not a statistic as it contains (unknown) parameters μ and/or σ	B1
	Or it contains unknown parameters (o.e.)	B1d (2)
	Notes	Total 6
(e)	$1^{\text {st }} \mathrm{B} 1$ for choosing II only $2^{\text {nd }} \mathrm{dB} 1$ dependent on choosing II only, for correct reason about parameters	

Question Number	Scheme	Marks
7(a)	$\begin{array}{lll} X \sim \mathrm{~B}(25,0.40) & & \\ \mathrm{P}(X \leqslant 3)=0.0024 & \text { (calc: } 0.002366768 \ldots .) & \text { accept } \mathrm{P}(X<4) \\ \mathrm{P}(X \geqslant 17)=0.0043 & \text { (calc: } 0.004326388 \ldots) & \text { accept } \mathrm{P}(X>16) \\ \mathrm{CR}: X \leqslant 3, X \geqslant 17 & \text { (o.e. }) & \end{array}$	M1 A1 A1 A1, A1
(b)	0.0067	B1ft (1)
(c)	$\begin{aligned} & \mathrm{H}_{0}: p=0.4 \quad \mathrm{H}_{1}: p<0.4 \\ & {[R \sim \mathrm{~B}(50,0.4)]} \\ & \mathrm{P}(R \leqslant 8)=0.0002305 \ldots \\ & \text { Reject } \mathrm{H}_{0} \\ & \text { Evidence that: the changes have been successful or there are fewer red sweets (oe) } \end{aligned}$	B1 M1 A1 A1cso (4)
	Notes	Total 10
(a) ${ }^{\text {(a) }}$ (${ }^{\text {rd }, 4^{\text {th }} \mathbf{A s}}$	M1 for writing or using $\mathrm{B}(25,0.4)$ [Can be implied by any of the correct answers] $1^{\text {st }} \mathrm{A} 1$ for $\mathrm{P}(X \leqslant 3)=0.0024$ (Just giving 0.0024 only scores if $\mathrm{CR} X \leqslant 3$ is given) $2^{\text {nd }} \mathrm{A} 1$ for $\mathrm{P}(X \geqslant 17)=0.0043$ (Just giving 0.0043 only scores if $\mathrm{CR} X \geqslant 17$ is given) $3^{\text {rd }} \mathrm{A} 1$ for CR: $X \leqslant 3$ or $X<4$ $4^{\text {th }} \mathrm{A} 1$ for CR : $X \geqslant 17$ or $X>16$ Apply ISW for e.g. $3 \geqslant X \geqslant 17$ or $X \leqslant 3$ and $X \geqslant 17$ etc If the only answer is $3 \geqslant X \geqslant 17$ award $3^{\text {rd }} \mathrm{A} 14^{\text {th }} \mathrm{A} 0$ We mark the region(s) labelled CR. If no CR labels accept $X \leqslant 3, X \geqslant 17$ (condone $X \leqslant 3 \cap X \geqslant 17$ or $X \leqslant 3$ and $X \geqslant 17$ etc) Do not accept probability statements as critical regions. B1ft for 0.0067 or ft sum of their 2 probabilities ($1^{\text {st }} \mathrm{A}$ and $2^{\text {nd }} \mathrm{A}$ in (a)) B1 for both hypotheses in terms of p or π M1 for $\mathrm{P}(R \leqslant 8)=$ awrt 0.0002 or stating CR: $R \leqslant 11$ Condone writing $\mathrm{P}(X=8)=$ awrt 0.0002 but award $2^{\text {nd }} \mathrm{A} 0$ cso $1^{\text {st }}$ A1 for a correct non-contextual conclusion $2^{\text {nd }}$ A1cso for a correct contextual conclusion dependent on all other marks Use $\mathbf{B}(\mathbf{2 5}, \mathbf{0 . 4})$ Can score $1^{\text {st }} \mathrm{B} 1$ Also if they get $\mathrm{P}(R \leqslant 8)=0.27353 \ldots=$ awrt 0.274 award B 1	

Pearson Education Limited. Registered company number 872828
with its registered office at 80 Strand, London, WC2R ORL, United Kingdom

